it19
Would you like to react to this message? Create an account in a few clicks or log in to continue.

Pixel - (Picture Element)

Go down

Pixel - (Picture Element) Empty Pixel - (Picture Element)

Post by Wingedge Mon Jul 14, 2008 7:54 pm

PIXEL

A pixel (short for picture element, using the common abbreviation "pix" for "pictures") is a single point in a graphic image. Each such information element is not really a dot, nor a square, but an abstract sample. With care, pixels in an image can be reproduced at any size without the appearance of visible dots or squares; but in many contexts, they are reproduced as dots or squares and can be visibly distinct when not fine enough. The intensity of each pixel is variable; in color systems, each pixel has typically three or four dimensions of variability such as red, green, and blue, or cyan, magenta, yellow, and black.

A pixel is generally thought of as the smallest single component of an image. The definition is highly context sensitive; for example, we can speak of printed pixels in a page, or pixels carried by electronic signals, or represented by digital values, or pixels on a display device, or pixels in a digital camera (photosensor elements). This list is not exhaustive, and depending on context there are several terms that are synonymous in particular contexts, e.g. pel, sample, byte, bit, dot, spot, etc. We can also speak of pixels in the abstract, or as a unit of measure, in particular when using pixels as a measure of resolution, e.g. 2400 pixels per inch, 640 pixels per line, or spaced 10 pixels apart.

The measures dots per inch (dpi) and pixels per inch (ppi) are sometimes used interchangeably, but have distinct meanings especially in the printer field, where dpi is a measure of the printer's resolution of dot printing (e.g. ink droplet density). For example, a high-quality inkjet image may be printed with 200 ppi on a 720 dpi printer.

The more pixels used to represent an image, the closer the result can resemble the original. The number of pixels in an image is sometimes called the resolution, though resolution has a more specific definition. Pixel counts can be expressed as a single number, as in a "three-megapixel" digital camera, which has a nominal three million pixels, or as a pair of numbers, as in a "640 by 480 display", which has 640 pixels from side to side and 480 from top to bottom (as in a VGA display), and therefore has a total number of 640 × 480 = 307,200 pixels or 0.3 megapixels.

The pixels, or color samples, that form a digitized image (such as a JPEG file used on a web page) may or may not be in one-to-one correspondence with screen pixels, depending on how a computer displays an image.

In computing, an image composed of pixels is known as a bitmapped image or a raster image. The word raster originates from halftone printing technology, and has been widely used to describe television scanning patterns.

DISPLAY PIXELS IN SIZE

The size of a display pixel is determined by the screen resolution and diagonal size of the monitor displaying it. Some Examples:

* Screen Res: 1024x768, Diagonal Size: 19", Pixel size: 0.377mm
* Screen Res: 800x600, Diagonal Size: 17", Pixel size: 0.4318mm
* Screen Res: 640x480, Diagonal Size: 15", Pixel size: 0.4763mm

NATIVE vs. LOGICAL PIXELS in LCDs

Modern computer monitors are expected to display a range of resolutions (this was not always so, even with CRTs). Displays capable of truly displaying only one resolution must first generate a native-resolution signal from any signal in a non-native resolution.

Modern computer LCDs are designed with a native resolution which refers to the perfect match between pixels and triads. CRT displays also use native red-green-blue phosphor triads, but these are not coincident with logical pixels.

The native resolution will produce the sharpest picture capable from the display. However, since the user can adjust the resolution, the monitor must be capable of displaying other resolutions. Non-native resolutions have to be supported by approximate resampling in the LCD controller, using interpolation algorithms (in CRTs, the physical system interpolates between the logical pixels and the physical phosphors). This often causes the screen to look somewhat jagged or blurry (especially with resolutions that are not even multiples of the native one). For example, a display with a native resolution of 1280×1024 will look best set at 1280×1024 resolution, will display 800×600 adequately by drawing each pixel with more physical triads, but will be unable to display in 1600×1200 sharply due to the lack of physical triads.

Pixels can be either rectangular or square. Pixels on computer monitors are usually square, but pixels used in some digital video formats have non-square aspect ratios, such as those used in the PAL and NTSC variants of the CCIR 601 digital video standard, and the corresponding anamorphic widescreen formats.

Each pixel in a monochrome image has its own value, a correlate of perceptual brightness or physical intensity. A numeric representation of zero usually represents black, and the maximum value possible represents white. For example, in an eight-bit image, the maximum unsigned value that can be stored by eight bits is 255, so this is the value used for white.

In a color image, each pixel can be described using its hue, saturation, and value (HSV), but is usually represented instead as the red, green, and blue intensities (in its RGB color space).

BITS PER PIXEL

The number of distinct colors that can be represented by a pixel depends on the number of bits per pixel (bpp). The maximum number of colors a pixel can take can be found by taking two to the power of the color depth. For example, common values are

* 8 bpp, 28 = 256 colors
* 16 bpp, 216 = 65536 colors; known as Highcolor or Thousands
* 24 bpp, 224 = 16,777,216 colors; known as Truecolor or Millions
* 48 bpp; for all practical purposes a continuous colorspace; used in many flatbed scanners and for professional work

Images composed of 256 colors or fewer are usually stored in the computer's video memory in packed pixel (chunky) format, or sometimes in planar format, where a pixel in memory is an index into a list of colors called a palette. These modes are therefore sometimes called indexed modes. While only 256 colors are displayed at once, those 256 colors are picked from a much larger palette, typically of 16 million colors. Changing the values in the palette permits a kind of animation effect. The animated startup logos of Windows 95 and Windows 98 are probably the best-known example of this kind of animation. On older systems, 4 bpp (16 colors) was common.

For depths larger than 8 bits, the number is the sum of the bits devoted to each of the three RGB (red, green and blue) components. A 16-bit depth is usually divided into five bits for each of red and blue, and six bits for green, as most human eyes are more sensitive to green than the other two primary colors. For applications involving transparency, the 16 bits may be divided into five bits each of red, green, and blue, with one bit left for transparency. A 24-bit depth allows 8 bits per component. On some systems, 32-bit depth is available: this means that each 24-bit pixel has an extra 8 bits to describe its opacity (for purposes of combining with another image).

When an image file is displayed on a screen, the number of bits per pixel is expressed separately for the raster file and for the display. Some raster file formats have a greater bit-depth capability than others. The GIF format, for example, has a maximum depth of 8 bits, while TIFF files can handle 48-bit pixels. There are no consumer display adapters that can output 48 bits of color, so this depth is typically used for specialized professional applications with film scanners, printers and very expensive workstation computers. Such files are only rendered on screen with 24-bit depth on most computers.

SUB PIXEL

Many display and image-acquisition systems are, for various reasons, not capable of displaying or sensing the different color channels at the same site. Therefore, the pixel grid is divided into single-color regions that contribute to the displayed or sensed color when viewed at a distance.

In some displays, such as LCD, LED, and plasma displays, these single-color regions are separately addressable elements, which have come to be known as subpixels. For example, LCDs typically divide each pixel horizontally into three subpixels.

Most digital camera image sensors also use single-color sensor regions, for example using the Bayer filter pattern, but in the case of cameras these are known as pixels, not subpixels.

For systems with subpixels, two different approaches can be taken:

* The subpixels can be ignored, with full-color pixels being treated as the smallest addressable imaging element; or
* The subpixels can be included in rendering calculations, which requires more analysis and processing time, but can produce apparently superior images in some cases.

The latter approach has been used to increase the apparent resolution of color displays. The technique, referred to as subpixel rendering, uses knowledge of pixel geometry to manipulate the three colored subpixels separately and produce a better displayed image.

While CRT displays also use red-green-blue masked phosphor areas, dictated by a mesh grid called the shadow mask, these can not be aligned with the displayed pixel raster, and therefore can not be utilised for subpixel rendering.

MEGAPIXEL

A megapixel is 1 million pixels, and is a term used not only for the number of pixels in an image, but also to express the number of sensor elements of digital cameras or the number of display elements of digital displays. For example, a camera with an array of 2048×1536 sensor elements is commonly said to have "3.1 megapixels" (2048 × 1536 = 3,145,728).

Digital cameras use photosensitive electronics, either charge-coupled device (CCD) or complementary metal–oxide–semiconductor (CMOS) image sensors, consisting of a large number of single sensor elements, each of which records a measured intensity level. In most digital cameras, the sensor array is covered with a patterned color filter mosaic having red, green, and blue regions in the Bayer filter arrangement, so that each sensor element can record the intensity of a single primary color of light. The camera interpolates the color information of neighboring sensor elements, through a process called demosaicing, to create the final image. These sensor elements are often called "pixels", even though they only record 1 channel (only red, or green, or blue) of the final color image. Thus, a so-called N-megapixel camera that produces an N-megapixel image provides only one-third of the information that an image of the same size could get from a scanner. Thus, certain color contrasts may look fuzzier than others, depending on the allocation of the primary colors (green has twice as many elements as red or blue in the Bayer arrangement).

In contrast to conventional image sensors, the Foveon X3 sensor uses three layers of sensor elements, so that it detects red, green, and blue intensity at each array location. This structure eliminates the need for de-mosaicing and eliminates the associated image artifacts, such as color blurring around sharp edges. Citing the precedent established by mosaic sensors, Foveon counts each single-color sensor element as a pixel, even though the native output file size has only one pixel per three camera pixels. With this method of counting, an N-megapixel Foveon X3 sensor therefore captures the same amount of information as an N-megapixel Bayer-mosaic sensor, though it packs the information into fewer image pixels, without any interpolation.

STANDARD SCREEN RESOLUTIONS

Standard display resolutions include:

* QVGA 0.077 Megapixels = 320×240
* VGA 0.3 Megapixels = 640×480
* SVGA 0.5 Megapixels = 800×600
* XGA 0.8 Megapixels = 1024×768 (sometimes called XVGA)
* WXGA 1.0 Megapixels = 1280×800)
* SXGA 1.3 Megapixels = 1280×1024
* WXGA+ 1.3 Megapixels = 1440×900
* SXGA+ 1.4 Megapixels = 1400×1050
* WSXGA+1.7 Megapixels = 1680×1050
* UXGA 1.9 Megapixels = 1600×1200
* WUXGA 2.3 Megapixels = 1920×1200
* QXGA 3.1 Megapixels = 2048×1536
* WQXGA 4.1 Megapixels = 2560×1600
* QSXGA 5.2 Megapixels = 2560×2048
* WQSXGA 6.6 Megapixels = 3200×2048
* QUXGA 7.7 Megapixels = 3200×2400
* WQUXGA 9.2 Megapixels = 3840×2400
* WUQSXGA 11.3 Megapixels = 4200×2690
Wingedge
Wingedge
Admin

Male
Number of posts : 53
Age : 40
Name : Sir Francis
Year : Instructor
Registration date : 2008-06-17

https://it19.forumotion.com

Back to top Go down

Back to top

- Similar topics

 
Permissions in this forum:
You cannot reply to topics in this forum